
Using GPG to Encrypt Your Data
Encryption helps protect your files during inter-host file transfers that use protocols that are not
already encryptedâ��for example, when using ftp or when using shiftc without the --secure
option. We recommend using the GNU Privacy Guard (GPG), an Open Source
OpenPGP-compatible encryption system.

GPG has been installed on Pleiades, Endeavour, and Lou in the /usr/bin/gpg directory. If you do
not have GPG installed on the system(s) that you would like to use for transferring files, please
see the GPG website.

Choosing What Cipher to Use

We recommend using the cipher AES256, which uses a 256-bit Advanced Encryption Standard
(AES) key to encrypt the data. Information on AES can be found at the National Institute of
Standards and Technology's Computer Security Resource Center.

You can set your cipher in one of the following ways:

Add --cipher-algo AES256 to your ~/.gnupg/gpg.conf file.• 
Add --cipher-algo AES256 in the command line to override the default cipher, CAST5.• 

Examples

If you choose not to add the cipher-algo AES256 to your gpg.conf file, you can add --cipher-algo
AES256 on any of these simple example command lines to override the default cipher, CAST5.

Creating an Encrypted File

Both commands below are identical. They encrypt the test.out file and produce the encrypted
version in the test.gpg file:

% gpg --output test.gpg --symmetric test.out

% gpg -o test.gpg -c test.out

You will be prompted for a passphrase, which will be used later to decrypt the file.

Decrypting a File

The following command decrypts the test.gpg file and produces the test.out file:

% gpg --output test.out -d test.gpg 

You will be prompted for the passphrase that you used to encrypt the file. If you don't use the
--output option, the command output goes to STDOUT. If you don't use any flags, it will decrypt
to a file without the .gpg suffix. For example, using the following command line would result in
the decrypted data in a file named "test":

% gpg test.gpg 

Using GPG to Encrypt Your Data 1

http://www.gnupg.org
http://csrc.nist.gov/


Selecting a Passphrase

Your passphrase should have sufficient information entropy. We suggest that you include five
words of 5-10 letters in size, chosen at random, with spaces, special characters, and/or numbers
embedded into the words.

You need to be able to recall the passphrase that was used to encrypt the file.

Factors that Affect Encrypt/Decrypt Speed on NAS Filesystems

We do not recommend using the --armour option for encrypting files that will be transferred
to/from NAS systems. This option is mainly intended for sending binary data through email, not
via transfer commands such as ftp or shiftc with the -secure option. The file size tends to be
about 33% bigger than without this option, and encrypting the data takes about 10-15% longer.

The level of compression used when encrypting/decrypting affects the time required to
complete the operation. There are three options for the compression algorithm: none, zip, and
zlib.

--compress-algo none or --compress-algo 0• 
--compress-algo zip or --compress-algo 1• 
--compress-algo zlib or --compress-algo 2• 

For example:

% gpg --output test.gpg --compress-algo zlib --symmetric test.out 

If your data is not compressible, --compress-algo 0 (none) gives you a performance increase of
about 50% compared to --compress-algo 1 or --compress-algo 2.

If your data is highly compressible, choosing the zlib or zip option will not only increase the
speed by 20-50%, it will also reduce the file size by up to 20x. For example, in one test on a NAS
system, a 517 megabyte (MB) highly compressible file was compressed to 30 MB.

The zlib option is not compatible with PGP 6.x, but neither is the cipher algorithm AES256.
Using the zlib option is about 10% faster than using the zip option on a NAS system, and zlib
compresses about 10% better than zip.

Random Benchmark Data

We tested the encryption/decryption speed of three different files (1 MB, 150 MB, and 517 MB)
on NAS systems. The file used for the 1 MB test was an RPM file, presumably already
compressed, since the resulting file sizes for the none/zip/zlib options were within 1% of each
other. The 150 MB file was an ISO file, also assumed to be a compressed binary file for the same
reasons. The 517 MB file was a text file. These runs were performed on a CXFS filesystem when
many other users' jobs were running. The performance reported here is for reference only, and
not the best or worst performance you can expect.

Using AES256 as the Cipher Algorithm

1 MB File 150 MB File 517 MB File

Using GPG to Encrypt Your Data 2



with --armour
~5.5 secs to
encrypt

~40 secs to encrypt

without --armour
~4 secs to
encrypt

~35 secs to encrypt

without --armour,
zlib compression

~33 secs to encrypt;
~28 secs to decrypt to
file

~33 secs, resultant file size
~30 MB; ~34 secs to decrypt
to file

without --armour, zip
compression

~36 secs to encrypt;
~31 secs to decrypt to
file

~38 secs, resultant file size
~33 MB; ~34 secs to decrypt
to file

without --armour, no
compression

~19 secs to encrypt;
~25 secs to decrypt to
file

~49 secs, resultant file size
~517 MB; ~75 secs to
decrypt to file

Article ID: 242
Last updated: 28 Apr, 2022
Revision: 15
Transferring Files & Data -> Remote Transfers -> Using GPG to Encrypt Your Data
https://www.nas.nasa.gov/hecc/support/kb/entry/242/

Using GPG to Encrypt Your Data 3

https://www.nas.nasa.gov/hecc/support/kb/entry/242/

	242.html

